SCIENCE WITH HERSCHEL

Ruud Visser

Postdoc Sterrewacht Leiden

October 28, 2010

Sterrewacht Leiden

ASTRONOMICAL OBSERVATIONS

X-ray

Microwave

Visible

B68: VISIBLE vs. INFRARED

HERBIG-HARO 46/47

Animatie: R. Hurt/NASA

MOLECULAR FINGER PRINTS

DOPPLER SHIFT

Spectral lines change in wavelength: Longer wavelength (redshift) if object moves away from us Shorter wavelength (blueshift) if object moves towards us

HIFI's HIGH SPECTRAL RESOLUTION

Wavelength shift = velocity High spectral resolution = accurate velocity measurement

FOLLOWING THE WATER TRAIL

WATER WITH HERSCHEL

What?

- × Water in Star-Forming Regions with Herschel
- Large international team (~80 people)
 led by Prof. Ewine van Dishoeck from Leiden
- ★ 425 hours of HIFI and PACS

Why?

- **×** Dynamical probe: see material at different velocities
- ★ Main reservoir of oxygen
- × Important for life on Earth

-100 -50 0 50 100 Velocity (km/s)

Water in Perseus
(nearby star-forming region)
Line intensity:

amount of water

Line shape:

temperature and velocity

FROM LOW TO HIGH MASS

COMPUTER MODEL

- Various components:
 + Remnant cloud core
 + Jets and outflows
 + UV radiation
 + Shocks
- Simulate emission
 from each component
- Working well for CO, not yet for water

CONCLUSIONS

× Herschel and **HIFI** are great instruments × Science highlights: + Very rich chemical soup + Different velocity components + Disentangle formation of new stars